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In previous publications[Phys. Rev. Lett.81, 1457 (1998); Phys. Rev. E61, 2759 (2000)], a simplified
model with the scalar order parameter and without the cubic term in the Hamiltonian has been used to account
for the phase transition between the two isotropic chiral liquids. The present approach is a step towards full
analysis of this transition using de Gennes tensor order parameter and the higher-order self-consistent ap-
proach. The importance of the cubic term for a proper description of this phase transition is indicated.
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The blue phase III(BP III) to isotropic phase transition
(BP III–isotropic transition, as fits) is one of the most com-
plex phase transitions to account for theoretically. The main
reason of this complexity lies in the need of including corre-
lation effects even at the level of mean-field-like description
[1,2]. On experimental side measurements of the specific
heat, the rotatory power, and the light scattering show that
the BP III–isotropic transition exists only at moderate chirali-
ties and disappears through the critical point when chirality
is high enough[3].

The effective, phenomenological Hamiltonian describing
this transition was proposed in Refs.[1,2]. Using the rotatory
power as the scalar order parameter and assuming the exis-
tence of the critical point[2] it was shown that BP III–
isotropic transition should belong to the Ising universality
class, the one characterizing, e.g., the ordinary liquid-gas
transition. Formulas for the light scattering intensity obtained
within such phenomenological approach[2] remain in quali-
tative agreement with experiments.

Alternatively, there have been attempts to describe BP
III–isotropic transition directly from the statistical field
theory [4,5] using Landau–Ginzburg–de Gennes free energy
[6] as a “mesoscopic” Hamiltonian. So far these attempts are
only partly successful. For example, Englertet al. [4]
showed a possibility of getting a stable critical point with the
help of the self-consistent third order cumulant expansion
calculations[7] but, owing to mathematical difficulties, we
were forced to use a simplified chiral model with a scalar
order parameter. Calculations with the full tensor order pa-
rameter were initialized in our recent paper[5]. Although
two regimes of different correlation behavior at the meso-
scopic length scale were shown to exist no direct BP III–
isotropic transition was detected within the first-order self-
consistent cumulant expansion. Again higher order calcula-
tions appeared extremely complex and for technical reasons
they were not carried out. Here we present results obtained
with the third order self-consistent cumulant expansion,
where the tensorial character of the order parameter is partly
taken into account. Namely, we consider only dominant fluc-
tuating modes and, additionally, carry out summation over
the momentum space using mean-spherical type of approxi-
mation. Within this simplified scheme we show that the ten-
sorial character of the order-parameter manifests itself
through the cubic term making the phase transition vanish
when this term is not present.

Following the notation of the previous papers[5,6] we
introduce the Landau–Ginzburg–de Gennes Hamiltonian in
the Fourier space as[5]

H = H2 + H3 + H4, s1d

where
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4o
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and whereMmsk̂d are ordinary base matrices representing
different helicity modes. In order to stabilize the isotropic
phase the term in curly brackets inH2 has to be positive,
which implies that r.−3

2 and tm= t−k2m2/4f1+ 1
6rs4

−m2dg.0. The quadratic part of the Hamiltonian can be re-
written in a more convenient form as
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where
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From Eq. (3) it is immediately evident that the dominant
fluctuating modes are associated withm=sgnskd2 mode.

The quadratic Hamiltonian(3) could directly be used to
introduce perturbative calculations, which is achieved by de-
fining a trial quadratic Hamiltonian[4,5],
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H8/v =
1
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hDm + ffsm,kdg2jummskdu2. s5d

With the definition(5) we split the Hamiltonian(1) in two
parts,

Hfmmskdg = H8fmmskdg + hHfmmskdg − H8fmmskdgj, s6d

where the differencedHfmmskdg=Hfmmskdg−H8fmmskdg will
be treated as perturbation.

Our aim now is to calculate variationally the free energy
of the system,

F = −
1

b
ln Z = −

1

b
ln Z8 −

1

b
lnke−bdHlH8, s7d

whereZ is defined as

Z =E p
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FÎ v
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Calculations can be performed using cumulant expansion.
We need to go up to the third order,
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and tuneDm variationally by minimizing the free energy(7)
to get BP III–isotropic transition. Straightforward calcula-
tions of Z8 yield
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More work needs to be done to derive the remaining terms.
The easiest one, which is also the only one in the first order
calculations, has been found in Ref.[5]. It reads

kdHlH8 = kH2 − H8 + H4lH8 = o
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Htm − Dm

+
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The cutoff parameterL is introduced to eliminate unphysi-
cal, high energy modes. The reasonable values forL are of
the order ofk [4–6].

As already mentioned before the lowest-order calculations
with only thekdHlH8 term being present and with variational
calculus following the Bogolyubov-Hellman-Feynman
(BHF) theorem[7,8] do not predict a phase transition be-

tween BP III and the isotropic phase[5]. Going beyond the
leading order, however, makes perturbative calculations ex-
tremely tedious. In order to make them feasible we restrict
ourselves to leading terms, corresponding to the dominant
m=2 mode. In this case the generalized BHF theorem is
fulfilled [7] for calculations carried out up to the third order.
Using the ordinary Wick theorem for contractions with the
Gaussian trial Hamiltonian we arrive at the following contri-
butions to the free energy:

kdH2lH8 = ksH2 − H8d2 + H3
2 + H4

2 + 2sH2 − H8dH4
2+lH8,
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− H8dH4
2 + 3sH2 − H8d2H4 + 3H3
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Note the existence of the cubic terms, which were not
present in Eq.(11). To perform calculations further we re-
place

dk1+¯+kn,0dkn+1+¯+kn+m,0 → dk1+¯+kn+m,0, s14d

which is in the spirit of the mean-spherical approximation,
known in statistical mechanics. Using notationt;t2, D
;D2, andSsDd;S2sD2d it yields
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Consequently, the total free energy takes the form
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According to the generalized BHF inequality[7,8], which
holds in this case, the variational parameterD that minimizes
the free energy has to satisfy the following equation:

] F

] D
= 0 and

]2F

] D2 . 0, s18d

which gives
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Perhaps it is worthwhile to mention at this point that without
the approximation(14) the parameterD is momentum depen-
dent, which converts Eq.(19) into integral equations.
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The approximations leading to Eq.(19) appear sufficient
to explain the transition between the isotropic phase and BP
III. In particular, theD parameter, being the inverse square of
the correlation length betweenm=2 modes of orientational
degrees of freedom in chiral liquids, shows characteristic dis-
continuous behavior in the transition region as shown in Fig.
1. In accordance with experiments the transition line ends up
with the critical point when chirality is high enough. The
presence of the cubic invariant is crucial to get the transition
between the isotropic phase and BP III. This could be shown
by carrying out the same calculations withH3=0. Then the
terms proportional toS3sDd andS5sDd vanish from Eq.(17)
and, correspondingly, the termsS2sDd and S4sDd from Eq.
(19). As one can see from the inset in Fig. 1 there is no phase
transition with the cubic term being absent. The same result
holds for all parameters studied numerically. It seems there-
fore justified to postulate that theH3 plays an important role
in proper understanding of not only the ordinary cubic blue
phases but also the BP III–isotropic transition phase transi-
tion. This aspect of the theory has not been present in sim-
plified description with the scalar order parameter[4], where
the transition was present even in the absence of cubic inter-
actions.

Summarizing, we presented calculations employing the
self-consistent, third order cumulant expansion to describe
the isotropic-to-BP III phase transition. Statistical field
theory calculations have been carried out for the Landau–

Ginzburg–de Gennes Hamiltonian expressed in terms of the
alignment tensor field. The calculations not only account for
the phase transition between the isotropic and BP III phases
but also demonstrate the importance of the cubic invariant.
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FIG. 1. Transition between isotropic chiral phases. The plot
shows variational parameterD as function of temperaturet for
different chiralities k. The critical point corresponds to
k=1.76. Other parameters are:L=k, b=3.38. The inset corre-
sponds to calculations with vanishing cubic termH3=0. All values
are dimensionless.
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