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Self-consistent model of blue phase Il to isotropic phase transition
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In previous publicationgPhys. Rev. Lett.81, 1457 (1998; Phys. Rev. E61, 2759(2000], a simplified
model with the scalar order parameter and without the cubic term in the Hamiltonian has been used to account
for the phase transition between the two isotropic chiral liquids. The present approach is a step towards full
analysis of this transition using de Gennes tensor order parameter and the higher-order self-consistent ap-
proach. The importance of the cubic term for a proper description of this phase transition is indicated.
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The blue phase II[BP Ill) to isotropic phase transition Following the notation of the previous papdi6] we
(BP lll-isotropic transition, as fijsis one of the most com- introduce the Landau—Ginzburg—de Gennes Hamiltonian in
plex phase transitions to account for theoretically. The mainhe Fourier space g§]
reason of this complexity lies in the need of including corre-
lation effects even at the level of mean-field-like description H=Hy+Hs+Hy, 1)
[1,2]. On experimental side measurements of the specific
heat, the rotatory power, and the light scattering show thaf/"n€re
the BP Ill-isotropic transition exists only at moderate chirali- 1 1
ties and disappears through the critical point when chirality ,/y = = {t — mxk + {1 +=p(4 —mz)}kz},um(kﬂz,
is high enougH3]. 4% m 6

The effective, phenomenological Hamiltonian describing

this transition was proposed in Ref4,2]. Using the rotatory 1 R R R
power as the scalar order parameter and assuming the exis- Hg/v = - - > > Tr{Mp, (k)M (k2)Mp (K3)]
tence of the critical poin{2] it was shown that BP Ill- kq.ko,kg my,my,mg

isotropic transition should belong to the Ising universality

class, the one characterizing, e.g., the ordinary liquid-gas

transition. Formulas for the light scattering intensity obtained

within such phenomenological approgdj remain in quali- Halv = TrIM . (kM- (k

tative agreement with experiments. v klyk§3,k4 ml,mzz,mg,m [Min,(k)Mm, (ko))
Alternatively, there have been attempts to describe BP R R

[ll-isotropic transition directly from the statistical field XTHM, (ka)Mm, (Ka) 11tm,(Ka) Sk kg, 00 (2)

theory[4,5] using Landau—Ginzburg—de Gennes free energy

[6] as a “mesoscopic” Hamiltonian. So far these attempts argnd whereM (k) are ordinary base matrices representing

only partly successful. For example, Engleet al. [4]  gifferent helicity modes. In order to stabilize the isotropic

showed a possibility of getting a stable critical point with the phase the term in curly brackets #f, has to be positive,

help of the self-consistent third order cumulant expansioRynich implies that p>—§ and Tm:t—K2m2/4[l+ép(4

calculations[7] but, owing tq .mathe.matlcal d|ff|c_u|t|es, we —m2)]>0. The quadratic part of the Hamiltonian can be re-
were forced to use a simplified chiral model with a scalar

order parameter. Calculations with the full tensor order payvntten in a more convenient form as

rameter were initialized in our recent pap&i. Although 1

two regimes of different correlation behavior at the meso- Holv = ZE {7+ [F(M, K12 ()2, )
scopic length scale were shown to exist no direct BP Ill— km

isotropic transition was detected within the first-order self-
consistent cumulant expansion. Again higher order calcula-
tions appeared extremely complex and for technical reasons Km 1

they were not carried out. Here we present results obtained f(mKk) = —ky/1+ ép(4 -n?) |.

with the third order self-consistent cumulant expansion, 2\/1 +=p(4-m?)

where the tensorial character of the order parameter is partly 6

taken into account. Namely, we consider only dominant fluc- (4)
tuating modes and, additionally, carry out summation over

the momentum space using mean-spherical type of approxkrom Eq. (3) it is immediately evident that the dominant
mation. Within this simplified scheme we show that the ten-fluctuating modes are associated witi¥ sgr(«)2 mode.

sorial character of the order-parameter manifests itself The quadratic Hamiltoniad3) could directly be used to
through the cubic term making the phase transition vanislintroduce perturbative calculations, which is achieved by de-
when this term is not present. fining a trial quadratic Hamiltoniaf4,5],

X e, (Ky) s, (K2) i, (K3) Sk +i,+k 4,06

here
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o= S an+ 1mOBnF.

With the definition(5) we split the Hamiltonian(1) in two
parts,

Hlpm(K)]=H' [ (K] + {H (] = H' [ (k) ]}, (6)

where the differenc@H[ pm(K) 1= H[ (K 1=H' [ gem(K) ] will
be treated as perturbation.
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tween BP 1l and the isotropic pha$g]. Going beyond the
leading order, however, makes perturbative calculations ex-
tremely tedious. In order to make them feasible we restrict
ourselves to leading terms, corresponding to the dominant
m=2 mode. In this case the generalized BHF theorem is
fulfilled [7] for calculations carried out up to the third order.
Using the ordinary Wick theorem for contractions with the
Gaussian trial Hamiltonian we arrive at the following contri-
butions to the free energy:

Our aim now is to calculate variationally the free energy  (5H?),,, = (H, = H')?+ H53+ H3+ 2(Ho— H')Ha+)y1,

of the system,
1 1 1
F=-=InZ=-=InZ"-=In(e’ Py, ,, (7)
B B B K

whereZ is defined as

z=| 11 { N /Zidum(k)}e‘m‘[“m(k)]. (8)
k,m ™

Calculations can be performed using cumulant expansion.

We need to go up to the third order,

€= = B(SHr0 + SO = (5702 ]

= By = A SH

+2(6H)3, 1+ O(6H?), (9)

and tuneA,, variationally by minimizing the free energy)

to get BP lll-isotropic transition. Straightforward calcula-

tions of Z’ yield

. } Aar
Nz = S e T

(10)

(8H%py = ((Ha = H')3+ H3+ 3(Hy— H')YH3+ 3(H,
= H'YHE+3(Hy—H')?Ha+ BHIH ). (13)

Note the existence of the cubic terms, which were not
present in Eq(11). To perform calculations further we re-
place

5k1+- . -+kn,05k

which is in the spirit of the mean-spherical approximation,
known in statistical mechanics. Using notatier= 7, A
=A,, andS(A)=S,(A,) it yields

56

22 (1 AV 5628 _ 308
SH2=(1-A) sz(A){zsls(T A)]§(A)+12584(A)

0 Okpr otk , 00 (14)

+etk 1 n+m

n+1 n+m

(15

and
SH3=(7-A)3S}(A) + %[(r— A)+ 12—6:}(7-— A)SHA)

924 16016 8008
+ {E(T— A) + E]SG(A) + Es‘im). (16)

Consequently, the total free energy takes the form

More work needs to be done to derive the remaining terms.

The easiest one, which is also the only one in the first order

calculations, has been found in Rg5). It reads

<57—l>7-t’ =(H-H' +H4>H' = 2 {Tm_Am

m

e sﬂ,mm,)}smmno, (1D
where
B o [N Kk
Sy(An) = 4% | pm(K)[H)p = 477213f0 A+ [f(m k)]
(12

The cutoff parameteA is introduced to eliminate unphysi-

cal, high energy modes. The reasonable values\fare of
the order ofx [4—6).

As already mentioned before the lowest-order calculations

_ _ay s By - 28 _ 896
F=SA)(r=4)+.S(4) 25ﬂ§(A) 1125,854(A)

2016 63616

+——B2S(A) + %¥2§(A)

625 S

According to the generalized BHF inequalify,8], which
holds in this case, the variational parametehat minimizes
the free energy has to satisfy the following equation:

IF
I — >
A 0 and A? 0, (18)
which gives
28 84 , 3584 2016 ,
ToAF S A o BS (M) B Sa)+ 12555 ®)
127232
+ °SP(A) = 0. 1
168757 S @) =0 (19)

with only the(8H),, term being present and with variational Perhaps it is worthwhile to mention at this point that without
calculus following the Bogolyubov-Hellman-Feynman the approximatioril4) the parametea is momentum depen-
(BHF) theorem[7,8] do not predict a phase transition be- dent, which converts Eq19) into integral equations.
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The approximations leading to E(L9) appear sufficient L
to explain the transition between the isotropic phase and BP
[ll. In particular, theA parameter, being the inverse square of
the correlation length between=2 modes of orientational
degrees of freedom in chiral liquids, shows characteristic dis- 01
continuous behavior in the transition region as shown in Fig.
1. In accordance with experiments the transition line ends up
with the critical point when chirality is high enough. The
presence of the cubic invariant is crucial to get the transition 0.0l
between the isotropic phase and BP lll. This could be shown
by carrying out the same calculations witty=0. Then the
terms proportional t&*(A) and (A) vanish from Eq(17)
and, correspondingly, the tern®(A) and S*(A) from Eq.
(19). As one can see from the inset in Fig. 1 there is no phase
transition with the cubic term being absent. The same result T
holds for all parameters studied numerically. It seems there- iy . . .
fore justified to postulate that tHes plays an important role FIG. 1._ T_ransmon between |sotrop_|c chiral phases. The plot
. - - . shows variational parametex as function of temperature for
in proper understanding of not only the ordinary cubic blue

. d . different chiralities «. The critical point corresponds to
phases but also the BP lll-isotropic transition phase transi-_; 76" other parameters ard=«, 8=3.38. The inset corre-

“‘?r_‘- This as_pe_ct of_the theory has not been present in Slm5'ponds to calculations with vanishing cubic telg=0. All values
plified description with the scalar order parame#y where .o dimensionless.

the transition was present even in the absence of cubic inter-

actions.

Summarizing, we presented calculations employing theésinzburg—de Gennes Hamiltonian expressed in terms of the
self-consistent, third order cumulant expansion to describalignment tensor field. The calculations not only account for
the isotropic-to-BP Il phase transition. Statistical field the phase transition between the isotropic and BP Il phases
theory calculations have been carried out for the Landaubut also demonstrate the importance of the cubic invariant.
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